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Abstract

A computational model is presented for the study of the solidification of a binary alloy. The enthalpy method has been modified

and incorporated into both an in-house code SOLCON (Heat Transfer 98, 1998, p. 241) and the commercial CFD code CFX (CFX

4.2: Solver, 1997). The model has been used to simulate experiments on solidification of a bismuth–tin alloy which were performed

during the 1997 flight of the MEPHISTO-4 experiment on the US Space Shuttle Columbia. The effects of thermal and solutal

convection in the microgravity environment and of concentration-dependent melting temperature on the phase change processes are

included. Comparisons of numerical solutions with actual microprobe results obtained from the MEPHISTO experiments are

presented. � 2002 Published by Elsevier Science Inc.
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1. Introduction

The study of solidification processes is very important
for the growth of high quality crystals. The performance
of electronic devices strongly depends on the presence of
microscopic crystal defects and compositional variations
caused by convection effects. The MEPHISTO 1 experi-
ment was a cooperative US–French–Australian research
effort directed towards gaining a detailed understanding
of crystal growth with reference to the solidification
behaviour of Bi-1 at.% Sn alloy. It combined ground-
based experiments and a series of experiments con-
ducted in a microgravity environment so that convection
was decreased to a level at which crystal growth was
largely diffusion controlled. The latest MEPHISTO
experiment was performed on board the US Space

Shuttle Columbia during the USMP-4 2 mission in No-
vember–December 1997.

The MEPHISTO-4 apparatus, shown schematically
in Fig. 1, consists of three parallel tubes or ampoules
(only one is shown in the figure), each containing some
sample material, around which are placed two ‘‘fur-
naces’’, each comprising a pair of heating and cooling
jackets. Between each heating and cooling jacket is a
nominally adiabatic or insulated zone. One furnace is
fixed, and acts to generate a reference state; the other
can be moved over the tubes. If it moves in the direction
from the cooling to the heating jacket (i.e., to the right in
Fig. 1), the material will be progressively solidified from
left to right; when it moves in the opposite direction,
melting will take place.

The in-flight experiment, which lasted for almost
14 days, consisted of a series of ‘‘events’’, most of
which contained three phases: solidification, holding
and melting. The solid/liquid (s/l) interface advanced
progressively along the ampoule over a period of about
a week, during which a number of events at different
solidification and melting speeds ranging from 0.74 to 40
lm/s, and lasting for periods of up to several hours
occurred. During the following week, the procedure was
reversed, culminating in a rapid quenching of the alloy
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to preserve the interface composition and shape for
post-flight analysis. Among the objectives of the experi-
ment were:

• determination of the s/l interface temperature using a
Seebeck technique (Rouzaud et al., 1988) in which the
differential voltage between the stationary and mov-
ing interfaces was measured,

• determination of the s/l interface shape using a Peltier
pulse technique.

Part of the MEPHISTO program was the numerical
modelling of the solidification process. Numerical sim-
ulations allow the investigation of the effects of natu-
ral convection on the interface shape, the prediction of
planar (i.e., non-dendritic) front instabilities and the
calculation of the segregation or redistribution of solute
during solidification. Numerical simulations have be-
come an important part of the post-flight analysis pro-
viding a better interpretation of experimental data and
the determination of the property values of bismuth.

For modelling transient phase change processes, a
fixed-grid single domain approach is widely accepted to
be simpler and lower in computational cost than front
tracking methods. However, the standard fixed-grid
enthalpy formulation has a major weakness: it produces
spurious numerical oscillations in the predicted tem-
perature and interface positions. To overcome this os-
cillatory behaviour, Voller and Fabbri (1995) suggested
selecting only predictions that occur when the interface
crosses over a node point. Tacke (1985) employed a
special discretization of the heat fluxes which allowed
the removal of the numerical oscillations for a one-di-
mensional phase change problem. Laouadi et al. (1998)
developed a numerical method based on averaging
the microscopic conservation equations of a two-phase
composite medium over a control volume with the as-
sumption that the phases may coexist at a temperature
different from the melting temperature.

Nomenclature

cp specific heat at constant pressure
C solute concentration
D solute diffusivity
f volume fraction
g gravitational acceleration
h enthalpy
H ampoule height
k thermal conductivity
kp partition coefficient
p iteration number
q heat flux
t time
T temperature
Tm melting temperature
V velocity
u velocity component in x direction
v velocity component in y direction

Greeks
bC solutal expansion coefficient
bT thermal expansion coefficient
Dx mesh size in x direction
Dy mesh size in y direction

q density
w stream function
f vorticity
l dynamic viscosity

Subscripts
a analytical
amp ampoule
b boundary
h hot zone
I interface
i, j grid point
l liquid
n numerical
r reference value
s solid
w wall
/ phase

Superscripts
� vector
k time step
p inner iteration

Fig. 1. Schematic diagram of the MEPHISTO apparatus, and the

nominal boundary temperature distribution. H and C denote the hot

and cold sections of the furnaces; A denotes the adiabatic zone.
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The problem becomes more complex for isothermal
plane front (i.e., non-dendritic 3) solidification of binary
alloys. The severe discontinuity of solute concentration
at the s/l interface and the sharp gradients of concen-
tration near the interface induced by the low values of
both the diffusion coefficient for tin in bismuth and the
partition coefficient of tin require special treatment of
the diffusion flux at the interface to obtain accurate so-
lutions. Additional difficulties arise when the effect of
solute concentration on melting temperature is taken
into consideration and the s/l interface position becomes
dependant on concentration as well as temperature.
Accurate estimation of interface concentration during
plane front solidification becomes essential to obtain a
smooth history of the interface position.

In this paper we describe a modification of the fixed-
grid approach for the study of unidirectional plane front
solidification of a Bi-1 at.% Sn alloy in a Bridgman
furnace. Thermal conductivity differences between the
solid and liquid phases are included. We first describe
the mathematical model of the solidification process and
then the formulations and procedures required to solve
such a model numerically. Finally the model is applied
to the simulation of some of the MEPHISTO events.
The problem involves heat conduction in the solid alloy
and in the walls of the ampoule containing the alloy;
thermal and solutal convection; and diffusion in the
liquid. Solute diffusion in the solid is neglected. The ef-
fects of concentration-dependent melting temperature
on the phase change processes are incorporated.

2. Mathematical formulation and numerical model

The governing time dependent equations describing
mass, momentum, heat and solute transport in the vor-
ticity–stream function formulation are:

q
of
ot

�
þr � ðeVV fÞ

�
¼ rq � ĝg gj j þ lr2f ð1Þ

r2w ¼ 
f ð2Þ

qcp
oT
ot

�
þr:ðeVV T Þ

�
¼ kr2T ð3Þ

oC
ot

þr � ðeVV CÞ ¼ Dr2C ð4Þ

where q, l, cp, k and D are respectively the density,
viscosity, specific heat and thermal conductivity of the
alloy and the diffusivity of the solute; f, w, T, eVV and C
are respectively the vorticity, stream function, temper-
ature, velocity vector and solute concentration; g is the

magnitude of the gravitational acceleration, and ĝg is the
unit vector in the direction of gravity. The density in the
buoyancy term of Eq. (1) is assumed to be a linear
function of temperature and solute concentration:

q ¼ qr 1½ 
 bT Tð 
 TrÞ þ bC Cð 
 CrÞ� ð5Þ
where bT and bC are the (assumed constant) thermal and
solutal expansion coefficients, defined by

bT ¼ 
 1

qr

oq
oT

ð6Þ

and

bC ¼ 1

qr

oq
oC

ð7Þ

qr, Tr and Cr are reference values of density, temperature
and concentration.

2.1. Fixed-grid numerical formulation for phase change
problems

To account for solidification of a binary alloy, the
movement of the s/l interface leading to the evolution of
latent heat and release of solute near the interface has to
be incorporated in the mathematical model. Using a
fixed grid in a single domain that does not change in size
and shape, the time-consuming explicit tracking of the
movement of the interface is replaced by a less de-
manding problem in which appropriate source terms in
the energy and solute equations take the place of the
boundary conditions at the interface. The computa-
tional domain comprises either ‘‘liquid’’ or ‘‘solid’’ or
‘‘partially solidified’’ cells; it is only for the latter that the
source terms are not zero. As far as flow is concerned, all
computational cells are treated as either ‘‘liquid’’ or
‘‘solid’’ cells depending on whether the interface has
passed the grid point located at the centre of the control
volume. The exact location of the interface is not known
a priori and must be determined as part of the solution
process from the computed temperature and concen-
tration. We assume a vertical interface in each control
volume, the position of which is determined by the
calculated local liquid fraction (details of this calcula-
tion appear in the next section). Overall the interface is
reconstructed by connecting these vertical lines in the
mid-height of control volumes and in general can have
any shape. In the microgravity environment considered
here, the interface is almost vertical, with only a slight
curvature near the boundaries.

2.1.1. Energy equation and procedure for liquid fraction
calculation

With the assumption that specific heat cp/ is constant
in each phase (/), the enthalpy can be written as the sum
of the sensible and latent heat:

h ¼ cp/T þ flL ð8Þ
3 The front is not actually planar, but the term is used by materials

scientists for morphologically stable, non-cellular solidification.
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in which L is the latent heat and fl is the local liquid
fraction. Substitution of Eq. (8) into the energy Eq. (3)
yields

qcp/
oT
ot

�
þr � ðeVV T Þ

�
¼ r � ðkrT Þ þ ST ð9Þ

where

ST ¼ 
 o

ot
ðqflLÞ ð10Þ

The source term (10) is used to account for latent heat
release during phase change. For a partially solidified
cell, a weighted average control volume conductivity is
calculated from:

ki;j ¼
klks

fskl þ flks
ð11Þ

where subscripts ‘s’ and ‘l’ refer to the solid and liquid
phases.

Eqs. (8)–(10) represent the fixed-grid approach
for modelling heat transfer during a phase change. An
essential part of this approach is the derivation of
an enthalpy–temperature–liquid fraction relationship.
Standard enthalpy methods are known to produce oscil-
lations in temperature due to the fact that the nodal
temperature of a partially solidified control volume is
assumed to be constant (equal to the melting tempera-
ture) while the liquid fraction, and hence the enthalpy are
changing. To overcome this problem (Timchenko et al.,
2000) we chose the temperature variation for the nodal
temperature of the partially solidified control volume to
represent the range over which solidification of this cell
occurs (i.e., as the liquid fraction varies from 1 to 0) due
to boundary temperature profile translation; this varia-
tion was based on the constant temperature slope across a
solidifying cell in the direction of solidification. If the cell
boundary temperatures in the direction of crystal growth
are Ti
1=2;j and Tiþ1=2;j respectively, and the melting point
is Tm, the liquid fraction fl is given by fl ¼ ðTiþ1=2;j 
 TmÞ=
ðTiþ1=2;j 
 Ti
1=2;jÞ so that a cell starts to solidify when the
interface crosses the left cell boundary (Ti
1=2;j 6 Tm) and
becomes completely solid when the interface crosses the
right cell boundary (Tiþ1=2;j 6 Tm). However, this ap-
proach is effective only if the liquid and solid conduc-
tivities are equal or nearly the same.

In the case of unequal thermal conductivities in
the solid and liquid phases, which is the case here, the
temperature gradient across a solidifying cell in the di-
rection of solidification cannot be assumed to be con-
stant, and the expression for liquid fraction derived in
Timchenko et al. (2000) is no longer valid. To obtain a
smooth history of the temperature and interface position
and to account for the change in the temperature gra-
dient while the interface travels over the solidifying cell,
a weighting procedure for the estimation of liquid frac-
tion in a partially solidified control volume is proposed.

The weighting in this scheme is designed to avoid a
discontinuity when the interface passes the grid point
and also when it goes from one cell to the next. It pro-
vides a smooth transition in the temperature gradient
based on which liquid fraction is calculated and hence in
the rate of solidification while solidifying.

Based on temperatures at the current iteration, two
liquid fractions based on the temperature gradients west
and east of the (i, j) cell shown in Fig. 2 can be found:

fljw ¼ 1:0
 Tm 
 0:5ðTi
1;j þ Ti;jÞ
Ti;j 
 Ti
1;j

ð12Þ

flje ¼
0:5ðTiþ1;j þ Ti;jÞ 
 Tm

Tiþ1;j 
 Ti;j
ð13Þ

A weighting based on the value of liquid fraction from
the previous iteration is then applied:

f p
l ¼ f p
1

l fljw þ ð1
 f p
1
l Þflje ð14Þ

where p is the iteration number. As in the case with
equal thermal conductivities (and hence a constant
temperature gradient in the direction of solidification)
the cell starts to solidify when

Ti
1=2;j ¼ 0:5ðTi
1;j þ Ti;jÞ ¼ Tm and fljw ¼ 1

and becomes completely solid when

Tiþ1=2;j ¼ 0:5ðTiþ1;j þ Ti;jÞ ¼ Tm and flje ¼ 0

In between, while Ti
1=2;j < Tm < Tiþ1=2;j, the liquid
fraction of the partially solidified cell is calculated from
the weighted average of the temperature gradients in the
liquid and solid. It should be noted that the scheme
described by Eqs. (12) and (13) is applicable only for a
uniform grid, and requires modification if a non-uni-
form grid is used.

As it is unlikely that the interface will coincide with
the cell boundary at the last time step before the cell
is completely solidified, it is proposed that the liquid

Fig. 2. Calculation of liquid fraction from temperature slopes in liquid

and solid.
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fraction of any (i, j) cell be allowed to take a negative
value when the interface passes the cell boundary and
enters (iþ 1, j) cell. After a converged solution in the
iteration process at time step k has been reached, the
liquid fraction of the (iþ 1, j) cell at the next time step
k þ 1 is recalculated and the liquid fraction of the (i, j)
cell is set to be zero:

f 0;kþ1
l ðiþ 1; jÞ ¼ 1:0þ f p;k

l ði; jÞ
f 0;kþ1
l ði; jÞ ¼ 0

ð15Þ

2.1.2. Diffusion equation and extrapolation scheme for
interface concentration

The source term accounting for the release of solute
into the liquid during solidification can be derived by
considering an average concentration in a control vol-
ume which is undergoing phase change (Voller et al.,
1989). This control volume can be treated as partially
solidified with an average solute concentration of

C ¼ fsCs þ flCl ð16Þ
where fs ¼ 1
 fl is the local solid volume fraction. Since
diffusion in the solid is neglected, the concentration in
the solid remains constant over time at any position,
although it may and generally will change with position
in the solid as solidification proceeds. The solute con-
servation equation can be written

oCl

ot
þr � ðeVV ClÞ ¼ r � ðDrClÞ þ SC ð17Þ

in which

SC ¼ ofs
ot

ð1
 kpÞCl þ fs
oCl

ot
ð18Þ

where kp is the partition coefficient (Cs=Cl at the inter-
face). Note that SC is zero throughout the liquid except
at the interface (i.e., in the partially solidified control
volume adjacent to the interface).

During solidification, the melting temperature varies
due to changes in solute concentration. With the
assumption that phase change takes place under local
thermodynamic equilibrium, the temperature at the in-
terface, i.e., the melting temperature Tm, can be ex-
pressed

Tm ¼ Tm0 þ mlCI ð19Þ

where Tm0 is the melting temperature of pure solvent
(bismuth, in the case of MEPHISTO-4), ml is slope of
the liquidus, assumed to be constant and obtained from
the phase diagram and CI is the interface solute con-
centration in the liquid.

In a fixed-grid formulation, the computed values of
Cl obtained from Eq. (17) are averaged values over a
liquid portion of the partially solidified control volume.
As the interface moves from one cell to the next, this
average value suddenly decreases because of the finite

discretization. It then gradually increases as solidifica-
tion proceeds due to solute rejection at the interface,
which occurs (in the case of Bi–Sn) at a rate faster than
diffusion out of the control volume. It follows that the
concentration-dependent melting temperature, if calcu-
lated from the average concentration, will have an in-
correct zigzag shape and hence will not be suitable for
the calculation of the local liquid fraction or for the
estimation of the interface position. To overcome this
problem, it is necessary to calculate the concentration-
dependent melting temperature based on the correct
interface solute concentration extrapolated from the cell
average values.

The concentration gradients near the interface in-
duced by the low values of partition and diffusion
coefficients are very sharp. Hence the interface concen-
tration cannot be obtained accurately by linear ex-
trapolation from the average cell concentrations even
assuming that the position of the interface has already
been accurately predicted. Noting from one-dimensional
theoretical considerations that the solute build-up in
front of the interface can be described by an exponential
function, an extrapolation scheme based on a one-pa-
rameter approach (Timchenko et al., 2000) has been
suggested. The disadvantage of this scheme is that it
requires a knowledge of the rate of solidification and
hence the extrapolation procedure needs to be adjusted
to account for different rates. A three-point extrapola-
tion scheme was used in Chen et al. (1998). However
this extrapolation procedure produces an interface
concentration which may not be continuous when the
interface passes through a cell boundary. This can pro-
duce a discontinuity in the melting temperature and
hence in the position of the interface when concen-
tration-dependent melting temperature is taken into
account.

We now present an extrapolation scheme given by

CI ¼ Ci;jð1þ flaÞ ð20Þ

The parameter a is determined, as described below, from
the maximum (last) value of Ci
1;j which occurs before
cell (i
 1, j) becomes completely solidified and the
minimum (first) value of Ci;j calculated when the inter-
face moves into the cell (i, j)

a ¼ ðCi
1;jÞlast
�


 ðCi;jÞfirst
�
= ðflÞfirstðCi;jÞfirst
� �

ð21Þ

This formulation ensures that when the interface first
enters the new cell (i, j), the interface concentration is
equal to that when the interface was about to leave the
cell (i
 1, j) and hence that CI remains a monotoni-
cally increasing function when the interface goes from
one computational cell to the next during solidification,
i.e.

CI ¼ ðCi;jÞfirst 1
�

þ ðflÞfirsta
�
¼ ðCi
1;jÞlast ð22Þ
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When the cell becomes completely solidified (flði; jÞ ap-
proaches zero) from Eq. (20) it can be seen that
CI ¼ Ci;j.

To account for the interface movement through
the partially solidified control volume, the diffusion flux
in the direction of solidification was discretized in the
manner described in Timchenko et al. (2000).

2.1.3. Translation of adiabatic boundary conditions
In Timchenko et al. (2000) we considered a Bridgman

furnace in which a moving temperature profile, con-
sisting of a cold zone (Tc), a transition zone and a hot
zone (Th), was imposed at the liquid boundary. Con-
duction in the ampoule was not considered and the
transition zone simulated the nominally adiabatic region
between the cold and hot zones by the imposition of a
ramp temperature profile with a specified constant gra-
dient at the liquid boundary. In more recent work
(Timchenko et al., 2001) and including the present paper
we have included heat conduction in the ampoule, which
in MEPHISTO is made of quartz, as part of the calcu-
lation procedure, and have imposed a temperature gra-
dient of 27 K/mm on the outside of the ampoule. This
leads to an internal gradient of approximately 20 K/mm,
corresponding to the gradient achieved in the experi-
ments. The next improvement was to incorporate true
adiabatic conditions into the model. The experiment
sought to achieve an adiabatic region between the cold
and hot jackets, although there must inevitably have
been some conduction in the structure of the jackets
militating against this. Apart from being more realistic,
there is a computational reason for using adiabatic
conditions: the imposition of a linear temperature pro-
file in a nominally adiabatic zone led to a larger interface
curvature and concentration segregation than was ex-
pected.

To be able to use an extrapolation scheme for con-
centration, we need to obtain a smooth decrease in the
temperature of the partially solidified cell as the inter-
face moves through the cell. However, translation of an
isothermal boundary condition and an adjacent adia-
batic boundary condition does not generate a smooth
change in the boundary temperature, because the
boundary cell at the junction between the two condi-
tions must be treated as either isothermal or adiabatic
depending on where the junction lies with respect to the
grid point. Because the boundary condition is imple-
mented on discrete points, this change cannot take place
continuously in time. In order to achieve a continuous
translation of the adiabatic boundary condition along
a fixed-grid boundary, therefore, a weighted boundary
condition was used for the boundary cell containing this
junction point.

Consider a junction with a cold isothermal condition
to its left and an adiabatic condition to its right, during
an event in which the temperature profile is moving to

the right. Until the junction point crosses the boundary
of this cell, the cell experiences an adiabatic boundary
condition. The cell boundary temperature Tw is calcu-
lated from the first two internal liquid temperatures
(denoted here by T1 and T2) using a second-order ap-
proximation to the zero wall heat flux. In the case of a
uniform mesh of size Dy this flux is:

qw ¼ 
3Tw þ 4T1 
 T2
2Dy

¼ 0 ð23Þ

When the junction point enters the cell, this cell becomes
partially under adiabatic and partially under isothermal
boundary conditions. To account for this, the following
expression is used to calculate the nodal boundary
temperature:

Tw ¼ F ðT1; T2Þð1
 nÞ þ Tcn ð24Þ
where F ðT1; T2Þ ¼ ð4T1 
 T2Þ=3 and n is the distance
from the left (solid side) cell boundary to the junction
point expressed as a fraction of the mesh size. When n
is zero, the cell is fully adiabatic; when it is unity, the
cell is fully isothermal. The same approach is applied to
the movement of the junction point between the adia-
batic and hot isothermal zones.

The treatment of temperatures at the boundary be-
tween the ampoule and the solidifying alloy required the
implementation of a special numerical scheme in SOL-
CON. An additional equation for Tb was constructed by
integrating the differential equation over the half control
volume adjacent to the boundary. Perfect thermal con-
tact at the alloy/ampoule interface is assumed, so that
the conductive flux across the boundary is constant:

qb ¼ km
oT
on

����
m

¼ kamp
oT
on

����
a

ð25Þ

where subscript ‘‘m’’ denotes the alloy material in both
liquid and solid phases, and ‘‘amp’’ denotes the am-
poule. The heat flux qb written in terms of ampoule
temperatures is used as the source term in the equation
for the boundary temperatures. This allows the inclusion
of alloy/ampoule boundary temperatures in the solution
procedure for the solidifying sample temperatures. The
ampoule outer boundary temperatures are calculated us-
ing Eq. (24) and used for the calculation of internal am-
poule temperatures in the next iteration.

3. Solution methods

Two different solution methods were used. One is a
finite difference vorticity–stream function formulation
implemented in an in-house code called SOLCON 4 and
another uses a finite volume, primitive variable for-
mulation in the commercial code CFX (CFX 4.2:

4 Solidification and convection.
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Solver, 1997), which is a general purpose code designed
so that complex three-dimensional geometries may
be readily handled. Although it can be used for two-
dimensional problems (by selecting a mesh size of three
in the ‘third’ direction), it tends to be more demanding in
CPU time than a purpose-written 2-D code.

3.1. SOLCON

A modified Samarskii–Andreyev (ADI) scheme was
used to solve iteratively the vorticity, stream function,
energy and solute equations at each time step. The
modification was designed to ensure accurate coupling
between the solution of the transient equations and
the thermal boundary conditions and to achieve true
transient ‘‘simultaneous’’ solution of the equations. The
coupling between equations and boundary conditions
becomes especially important because of the movement
of the temperature boundary profile. Moreover, the use
of iterations is necessary because of the strong non-lin-
earity of all governing equations. To ensure stability
of the computational process, all source terms and
non-linear coefficients depending on liquid fraction were
linearized based on the value of the liquid fraction ob-
tained from the previous iteration. In the solid, the
vorticity, stream function and velocities were set to zero.

The vorticity, stream function and energy equations
were discretized using central differences and solved by
this modified ADI scheme. Interface boundary condi-
tions for vorticity and stream function were applied at
the mesh points in the solid sub-region nearest to the s/l
interface. Following Raw and Lee (1991) for the calcu-
lation of vorticity boundary conditions, the expression

f ¼ ðsin
2 cÞo2w=ox2 ð26Þ
was used. Here c is the angle between the liquid/solid
interface and the horizontal axis. The boundary con-
dition w ¼ 0 was used for the stream function. The
concentration Eq. (17) was discretized using a control
volume approach to ensure mass balance during phase
change in the partially solidified control volume. A
second-order upwind scheme was used for the convec-
tion fluxes with central differences for the diffusion
terms.

3.2. CFX

A sequential solution algorithm using the commercial
flow code CFX with a primitive variable formulation
was used. In order to simulate the solid region in which
the velocity is zero, a resistive force R was introduced
into the momentum equation. R was set to zero in the
liquid and was given a very large value in the solid
(typically 106). The set of transport equations was dis-
cretized using a finite volume method. The SIMPLEC
algorithm was used for pressure–velocity coupling with

the Rhie–Chow interpolation method to prevent oscil-
lations of pressure on the non-staggered grid. A fully
implicit scheme was used for marching in time. Dis-
cretization of convection fluxes was performed using a
hybrid scheme and the diffusion fluxes were discretized
using central differences. The full field Stone’s method
was used to solve the complete system of equations.

4. Results and discussion

4.1. Comparisons with analytical solutions

To validate the physical and mathematical models, a
comparison of numerical results (Cn) with the analytical
solution (Ca) of Smith et al. (1955) for one-dimensional,
diffusion-controlled plane front solidification was per-
formed. No convection was included. Results of this
comparison are shown in Fig. 3. It can be seen that the
computed solute concentrations in the solid at the mid-
height of the ampoule are very close to the analyti-
cal, diffusion-controlled values. The relative difference
ðCa 
 CnÞ=Ca is less than 1%. As noted below, segrega-
tion occurs and the concentrations away from the mid-
height would differ from these one-dimensional values.
Fig. 4 shows liquid cell average concentration (solid line)
and extrapolated interface concentration (dashed line),
which was used to calculate the solid concentration
shown in Fig. 3.

4.2. Modelling of MEPHISTO experiments

For the solutions presented here, grid sizes of 0.2 and
0.5 mm in the x (axial) and y (transverse) directions
respectively, and times steps of 1 s were typically used in

Fig. 3. Analytical and numerical solute concentration in the solid for 5

mm of solidification.
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CFX. For SOLCON a grid size of 0.2 mm in the x and
0.3 mm in y directions was used with time step of 0.5 s.
These mesh sizes were found to be adequate by extensive
testing against results obtained using finer meshes.

The model has been applied to the simulation of the
experiments performed during the 1997 flight of MEP-
HISTO-4. In the example described below (the events
identified in the flight schedule as 11E and 11F, Ab-
baschian et al., 2001) solidification at a pulling speed
(the speed of the moving furnace) of 3.34 lm/s occurred
for 0.333 h. The furnace was then stopped for 3.7 h (an
‘‘extended hold’’) during which time almost complete
rehomogenization of the liquid occurred. Solidification
at a speed of 1.85 lm/s followed for 0.6 h. The melt-
ing temperature was calculated according to (21) with
m ¼ 
2:32 K/at.%. The magnitude of the gravity vector
was taken to be 1 lg, i.e., 9:81� 10
6 m s
2, acting
in a direction normal to the axis of the ampoule. The
variation of the thermal conductivity between the
solid and liquid phases was taken into account with

Fig. 4. Time history of computed liquid cell average concentration (––)

and extrapolated interface concentration (- - -).

Fig. 5. (a) Distribution of solute concentration at the mid-height of the ampoule during event 11E. (b) Distribution of melting temperature (––) and

the actual temperature distribution (- - -) at the mid-height of the ampoule during event 11E.

Fig. 6. (a) Distribution of solute concentration at the mid-height of the ampoule during the hold. (b) Distribution of melting temperature at the mid-

height of the ampoule during the hold.
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kl ¼ 12:4 W/mK and ks ¼ 6:5 W/mK. Properties values
for pure liquid bismuth (Timchenko et al., 1998) taken
at the reference temperature of 271.3 �C (the equilibrium
melting temperature of Bi) were used. The partition
coefficient kp for Sn in Bi was taken to be 0.029. Re-
ported values of the diffusion coefficient D for dilute Sn
in Bi near 271.3 �C vary from 1:76� 10
9 m2/s (Buell
and Shuck, 1970) to 2:7� 10
9 m2/s (Niwa et al., 1957).
In these calculations D ¼ 2:0� 10
9 m2/s was chosen
after a comparison of numerical solutions with post-
flight microprobe results for solute concentration in
the solid.

The moving temperature profile imposed on the outer
walls of the ampoule consisted of a cold zone (Tc ¼
50 �C), an adiabatic zone and a hot zone (Th ¼ 700 �C).
The length of the adiabatic zone was 20 mm, leading to
an internal temperature gradient in the liquid of approx-
imately 20 K/mm.

Fig. 5(a) shows the distribution of solute concen-
tration at the mid-height of the ampoule during the
11E solidification event. Fig. 5(b) shows the distri-
bution of melting temperature (solid lines) and the
actual temperature distribution (dashed lines) at the
mid-height of the ampoule during the same event. Be-
cause of the increase of solute concentration at the in-
terface during solidification, the melting temperature
decreases according to the slope of liquidus in the phase
diagram (Eq. (19)). During the hold, solute concen-
tration at the interface decreases due to diffusion of
solute into the liquid as shown in Fig. 6(a). Accord-
ingly, the melting temperature increases as shown in
Fig. 6(b).

Fig. 7 shows temperature contours and the velocity
field in the liquid phase (a) at the start of solidification,
(b) in the end of event 11E and (c) after event 11F. It can
be seen that both temperature and velocity fields are
moving along the sample as time progresses according
to the moving boundary temperature profile.

Fig. 7. Temperature contours and velocity field (a) at the start of so-

lidification, (b) at the end of event 11E and (c) after event 11F.

Fig. 8. Stream function contours and s/l interface (a) at the start of

solidification, (b) at the end of event 11E and (c) after event 11F.

Fig. 9. Solute concentration in the solid (a) along the ampoule centre line and (b) across the ampoule.
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Fig. 8 shows the s/l interface and stream function
contours in the liquid at the same times as shown on Fig.
7. The flow is thermally driven and counterclockwise. At
the end of the 11E solidification, a very weak positive
vertical velocity has appeared near the interface in the
top and bottom corners due to convection induced by
solutal gradients. During the hold, gradients of the
concentration in front of the interface dropped sub-
stantially (Fig. 6(a)) and a reverse cell has not formed.

The distribution of solute concentration in the solid
along the centre line of the sample is shown in Fig. 9(a).
Numerical solutions are presented together with the
microprobe results obtained after the flight from the

experimental samples. Fig. 9(b) shows the distribu-
tion of solute concentration across the solid. Both axial
and transverse numerical distributions are in very good
agreement with the experimental results.

Due to limitations in the measurement of tempera-
ture, some discrepancy did exist between computed and
measured temperatures. Fig. 10(a) shows the computed
temperature distribution along the centreline of the
sample together with the in-flight measurements ob-
tained using a thermocouple located on the centre line.
Fig. 10(a) contains measurement data obtained from all
events; finer details of the temperature distribution near
the interface taken from one event are shown in Fig.
10(b). The change in the computed temperature gradient
is caused by the change in thermal conductivity between
the solid and liquid phases. The measurements do not
exhibit this sharp change in gradient; a smearing of the
experimental values results from the finite size of the
thermocouple.

Fig. 11 shows the interface shape after the last event
of solidification (11F) in the MEPHISTO experiment.
The computed interface shape is in excellent agreement
with that observed in the actual experiment.

5. Conclusion

A modified fixed-grid approach has been used to
simulate MEPHISTO experiments on the solidifica-
tion of a bismuth–tin alloy. To obtain a smooth history
of the temperature and interface position while the in-
terface is moving through a fixed-grid domain, proce-
dures for the calculation of liquid fraction, interface
concentration and translation of adiabatic boundary
condition were developed. Comparisons of computed
solutions for solute concentration, temperature and in-
terface shape with measured values show very good
agreement.

Fig. 10. Temperature distribution (a) along the centre line and (b) in the vicinity of interface.

Fig. 11. Comparison of the computed and measured interface shape.
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